Abstract
Controlling infectious diseases has become an increasingly complex issue, and vaccination has become a common preventive measure to reduce infection rates. It has been thought that vaccination protects the population. However, there is no fully effective vaccine. This is based on the fact that it has long been assumed that the immune system produces corresponding antibodies after vaccination, but usually does not achieve the level of complete protection for undergoing environmental fluctuations. In this paper, we investigate a stochastic SIS epidemic model with incomplete inoculation, which is perturbed by the Ornstein–Uhlenbeck process and Brownian motion. We determine the existence of a unique global solution for the stochastic SIS epidemic model and derive control conditions for the extinction. By constructing two suitable Lyapunov functions and using the ergodicity of the Ornstein–Uhlenbeck process, we establish sufficient conditions for the existence of stationary distribution, which means the disease will prevail. Furthermore, we obtain the exact expression of the probability density function near the pseudo-equilibrium point of the stochastic model while addressing the four-dimensional Fokker–Planck equation under the same conditions. Finally, we conduct several numerical simulations to validate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.