Abstract
We consider the dynamics of a two-dimensional map proposed by Maynard Smith as a population model. The existence of chaos in the sense of Marotto's theorem is first proved, and the bifurcations of periodic points are studied by analytic methods. The numerical simulations not only show the consistence with the theoretical analysis but also exhibi the complex dynamical behaviors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have