Abstract
The main aim of this paper is to study the dynamics of a recurrent neural networks with different input currents in terms of asymptotic point. Under certain circumstances, we studied the existence, the uniqueness of bounded solutions and their homoclinic and heteroclinic motions of the considered system with rectangular currents input. Moreover, we studied the unpredictable behavior of the continuous high-order recurrent neural networks and the discrete high-order recurrent neural networks. Our method was primarily based on Banach’s fixed-point theorem, topology of uniform convergence on compact sets and Gronwall inequality. For the demonstration of theoretical results, we give examples and their numerical simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.