Abstract
We show theoretically that the sudden application of an appropriate ac field to correlated lattice fermions flips the band structure and effectively switches the interaction from repulsive to attractive. The nonadiabatically driven system is characterized by a negative temperature with a population inversion. We numerically demonstrate the converted interaction in an ac-driven Hubbard model with the nonequilibrium dynamical mean-field theory solved by the continuous-time quantum Monte Carlo method. Based on this, we propose an efficient ramp-up protocol for ac fields that can suppress heating, which leads to an effectively attractive Hubbard model with a temperature below the superconducting transition temperature of the equilibrium system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.