Abstract

We study some dynamical properties of a charged particle that moves in a nonhomogeneous electric field and collides against an oscillating platform. Depending on the values of parameters, the system presents (i) predominantly regular dynamics or (ii) structures of chaotic behavior in phase space conditioned to the initial conditions. The localization of the fixed points and their stability are carefully discussed. Average properties of the chaotic sea are investigated under a scaling approach. We show that the system belongs to the same universality class as the Fermi-Ulam model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.