Abstract
Nowadays, factories should be coordinated with changes in the dynamic environment due to the intense competition in the businesses. Different strategies and systems are existing to help factories in a dynamic situation. In this article, a new multi-objective mathematical model is presented by the implementation of dynamic virtual cellular manufacturing and also considering new product development which enables factories to be successful in their business. This paper contains three objectives including maximizing the total profits of the factory in all the periods, the grouping efficacy and also the number of the new product. After linearization of the proposed model, multi-choice goal programming with utility function is used to solve the model. In addition, a case study has been conducted in the real world to show the effectiveness of the proposed model and finally, the results show that the integration of virtual cellular manufacturing with new product development can be helpful for managers and companies and leads to more efficiency.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have