Abstract

Ligands that enable the delocalization of excitons beyond the physical boundary of the inorganic core of semiconductor quantum dots (QDs), called "exciton-delocalizing ligands (EDLs)", offer the opportunity to design QD-based environmental sensors with dynamically responsive optical spectra, because the degree of exciton delocalization depends on the electronic structure of the EDL. This paper demonstrates dynamic, reversible tuning of the optical bandgap of a dispersion of CdSe QDs through the redox states of their 1,3-dimesitylnaphthoquinimidazolylidene N-heterocyclic carbene (nqNHC) ligands. Upon binding of the nqNHC ligands to the QD, the optical bandgap bathochromically shifts by up to 102 meV. Electrochemical reduction of the QD-bound nqNHC ligands shifts the bandgap further by up to 25 meV, a shift that is reversible upon reoxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.