Abstract

Controlling the flow of light on-chip is of great importance for quantum computing and optical signal processing. In this paper, we present a theoretical study to reveal the underlying physics of how to effectively trap, store and release a signal pulse, and eventually break the delay-bandwidth limit, based on controllable EIT-like effect in dynamically tuned standing-wave cascaded nanocavities. Using this mechanism, we design a compact silicon photonic crystal system with long storing time and a delay-bandwidth product over 460, which is about two orders of magnitude greater than the reported results obtained by other methods based on static resonator system, and the trapped signal pulse can be released on demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.