Abstract

AbstractMulti‐agent reinforcement learning has played an increasingly important role in intelligent traffic signal control due to its self‐learning ability. However, existing algorithms only focus on signal timing mechanism design while ignoring the exponential growth of the joint action dimension as the number of intersections increases, which will ultimately face the learning difficulty. In this paper, traditional traffic methods are introduced into MARL to flexibly determine the phase and duration of each intersection. The proposed MARL algorithm based on mean field theory has the ability to convert a large number of agents to approximately binary interaction, which can effectively reduce the dimension of joint action space in multi‐agent environment and learn in a robust process. Besides, to improve the performance of traditional traffic methods, the recurrent neural network (RNN) and an improved Webster's formula with revised parameters are combined to dynamically determine the phase duration according to the historical volume of traffic flow. The simulation results indicate that the proposed algorithm shows superior scalability compared to baseline methods and has great potential to be applied in the large scale road‐networks scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.