Abstract

Interaction of oscillatory rhythms at different frequencies is considered to provide a neuronal mechanism for information processing and transmission. These interactions have been suggested to have a vital role in cognitive functions such as working memory and decision-making. Here, we investigated the medial prefrontal cortex (mPFC), which is known to have a critical role in successful execution of spatial working memory tasks. We recorded local field potential oscillations from mPFC while rats performed a delayed-non-match-to-place (DNMTP) task. In the DNMTP task, the rat needed to decide actively about the pathway based on the information remembered in the first phase of each trial. Our analysis revealed a dynamic phase-amplitude coupling (PAC) between theta and high frequency oscillations (HFOs). This dynamic coupling emerged near the turning point and diminished afterward. Further, theta activity during the delay period, which is thought of as the maintenance phase, in the absence of the coupling, can predict task completion time. We previously reported diminished rat performance in the DNMTP task in response to electromagnetic radiation. Here, we report an increase in the theta rhythm during delay activity besides diminishing the coupling after electromagnetic radiation. These findings suggest that the different roles of the mPFC in working memory could be supported by separate mechanisms: Theta activity during the delay period for information maintenance and theta-HFOs phase-amplitude coupling relating to the decision-making procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call