Abstract
This paper addresses the challenge of recognizing dynamic textures based on spatial-temporal descriptors. Dynamic textures are composed of both spatial and temporal features. The histogram of local binary pattern (LBP) has been used in dynamic texture recognition. However, its performance is limited by the reliability issues of the LBP histograms. In this paper, two learning-based approaches are proposed to remove the unreliable information in LBP features by utilizing Principal Histogram Analysis. Furthermore, a super histogram is proposed to improve the reliability of the LBP histograms. The temporal information is partially transferred to the super histogram. The proposed approaches are evaluated on two widely used benchmark databases: UCLA and Dyntex++ databases. Superior performance is demonstrated compared with the state of the arts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have