Abstract

The effect of strain rate up to nearly = 102/s on the tensile stress-strain properties of isotropic fine-grained nuclear-grade graphite IG-11 was investigated. Cylindrical tensile specimens machined out of graphite bars were used in both static and dynamic tests. The dynamic tensile stress-strain curves up to fracture were determined using the split Hopkinson bar (SHB). The low and intermediate strain-rate tensile stress-strain relations up to fracture were measured on an Instron 5500R testing machine. It was demonstrated that the ultimate tensile strength increases slightly, while the fracture strain and absorbed energy up to fracture decrease dramatically with increasing strain rate. Macro and microscopic examinations revealed a slight difference in the fracture surfaces between the static and dynamic tension specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.