Abstract

As the number and variety of remote sensing satellites continue to grow, user demands are becoming increasingly complex and diverse. Concurrently, there is an escalating requirement for timeliness in satellite observations, thereby augmenting the complexity of task processing and resource allocation. In response to these challenges, this paper proposes an innovative method for dynamic task planning in multi-source remote sensing satellite cooperative observations tailored to complex scenarios. In the task processing phase, this study develops a preprocessing model suitable for various types of targets, enabling the decomposition of complex scenes into multiple point targets for independent satellite observation, thereby reducing the complexity of the problem. In the resource allocation phase, a dynamic task planning algorithm for multi-satellite cooperative observation is designed to achieve dynamic and optimized scheduling of the processed point targets, catering to the needs of multi-source remote sensing satellites. Empirical validation demonstrated that this method effectively implements dynamic adjustment plans for point targets, comprehensively optimizing the number of observation targets, computation time, task priority, and satellite resource utilization, significantly enhancing the dynamic observation efficiency of remote sensing satellites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call