Abstract

The adsorption of two substituted nitrophenols, namely 4-nitrophenol (4-NP) and 2,4-dinitrophenol (2,4-DNP), from aqueous solutions onto perfil was studied using a fixed bed column. The theoretical solid diffusion control (SDC) model describing single solute adsorption in a fixed bed based on the Linear Driving Force (LDF) kinetic model was successfully applied to the investigated systems. The model parameters of solid diffusion coefficient, DS, axial dispersion coefficient, DL, and external mass transfer coefficient, kf, for the investigated systems were estimated by the means of a best fit approach. Some deviations were found between the predicted and the experimental data which reflect the fact that the assumptions of the model were not quite fulfilled for these experiments. It is necessary to adjust the values of the solid diffusion coefficient, the axial dispersion coefficient and the external mass transfer coefficient in order to obtain a satisfactory agreement between the simulated and the experimental breakthrough curves. A Biot number was used as an indicator for the intarparticle diffusion. The Biot number was found to decrease with the increase of bed depth, indicating that the film resistance increased or the intraparticle diffusion resistance decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.