Abstract

In this article, a new dynamic structural statistical model based online signature verification algorithm is proposed, in which a method for statistical modeling the signature’s characteristic points is presented. Dynamic time warping is utilized to match two signature sequences so that correspondent characteristic point pair can be extracted from the matching result. Variations of a characteristic point are described by a multi-variable statistical probability distribution. Three methods for estimating the statistical distribution parameters are investigated. With this dynamic structural statistical model, a discriminant function can be derived to judges a signature to be genuine or forgery at the criterion of minimum potential risk. The proposed method takes advantage of both structure matching and statistical analysis. Tested in two signature databases, the proposed algorithm got much better signature verification performance than other results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.