Abstract

Stiffness is an important mechanical characteristic of asphalt mixtures used in the wearing course. It is one of the determining factors in the generation of tyre/road noise. The dynamic stiffness of the upper layer of the road surface depends on the physical and mechanical properties of the materials it is composed of, and traffic load. Determination of dynamic stiffness, both in laboratory conditions and in situ, requires consideration of many other factors. Tests of dynamic properties of road surfaces in field conditions are most often conducted with the help of modal hammers. Impulse excitation results are usually less accurate than those in the application of modal exciters. The test stand was constructed, comprising a tripod, 32-channel and 24-bit data acquisition system, exciter, signal amplifier, impedance head, single-axis piezoelectric accelerometers and a stinger. The test stand and the proposed method of measuring dynamic stiffness do not require the determination of the resonance frequency of the tested specimen and can be used both on various types of bituminous mixtures of varying shape and dimensions, as well as directly on the upper surface of the wearing course of bituminous pavements. The test results showed that the type of bituminous mixture used in the wearing course significantly affects its dynamic stiffness. The dynamic stiffness level of asphalt concrete, stone mastic asphalt and porous asphalt layers was determined to be similar. The addition of rubber granulates significantly reduced its rigidity, which is very beneficial from the point of view of reducing the tyre/road noise.

Highlights

  • The study of the relationship between a given force in dynamic terms and the material’s response, expressed as displacement, velocity or acceleration, is a complex issue

  • The wearing course of the road pavement can be performed in various technologies

  • Thin asphalt layers and poroelastic pavements are the preferred solution for reduction of tyre/road noise

Read more

Summary

Introduction

The study of the relationship between a given force in dynamic terms and the material’s response, expressed as displacement, velocity or acceleration, is a complex issue. This is a difficult problem for bituminous composites used in the wearing course of road pavement. In tests on real road surfaces, the thickness of the wearing course, the characteristics of the materials and the thickness of the binder layer and base course are of great importance. In both cases, the method of dynamic load implementation has a significant impact

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call