Abstract
This study introduces the integration of dynamic computer vision-enabled imaging with electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). This approach involves real-time discovery and analysis of atomic structures as they form, allowing us to observe the evolution of material properties at the atomic level, capturing transient states traditional techniques often miss. Rapid object detection and action system enhances the efficiency and accuracy of STEM-EELS by autonomously identifying and targeting only areas of interest. This machine learning (ML)-based approach differs from classical ML in that it must be executed on the fly, not using static data. We apply this technology to V-doped MoS2, uncovering insights into defect formation and evolution under electron beam exposure. This approach opens uncharted avenues for exploring and characterizing materials in dynamic states, offering a pathway to increase our understanding of dynamic phenomena in materials under thermal, chemical, and beam stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.