Abstract

This paper offers a survey of simple, flexible structural elements subjected to non-conservative follower loads, such as those caused by the thrust of rocket- and jet engines, and by dry friction in automotive disk- and drum-brake systems. Emphasis is on the “canonical problems”, Beck's, Reut's, Leipholz's, and Hauger's columns. Beck's and Reut's columns have been realized experimentally, and very good agreement between theory and experiments has been found. Leipholz's column is basically realized in an automobile brake system, where noise due to dynamic or parametric instability (brake squeal) is a well-known environmental problem. It is attempted to give a broad overview, with emphasis on experimental works and the associated theoretical problems. Structural optimization is also included in the review, as many studies in that area have served an important purpose in the development of optimization techniques for practical, large-scale optimization problems with non-conservative forces, such as in aeroelasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call