Abstract

The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.