Abstract
AbstractElectron‐transfer processes in solution are among the most important reactions in chemistry and biology. The huge number of redox reactions of transition metal ions and complexes, many preparatively important oxidations and reductions of organic compounds, photosynthesis, and metabolism are only a few examples where electron‐transfer reactions play a pivotal role. This ubiquity, as well as their relative simplicity, makes them excellent models for the study on a molecular level of chemical reactions in solution. A particularly important question in chemical reaction dynamics in solution is the influence of the solvent on the reaction rate. In this context one distinguishes between static and dynamic solvent effects. Static effects refer to the stabilization of reactants, transition state, and products, that is, how the solvent affects the free energies of these species and the energy of activation. This interpretation of solvent effects on all kinds of chemical reactions is well established. A more recent development is the investigation of the influence of solvent dynamics on the rate of a reaction. The transfer of an electron is usually thought to be triggered by a fluctuation of the dielectric polarization in the surrounding solvent. The dynamics of such fluctuations is determined by the finite response time of the orientational polarization of the solvent. Under certain conditions this dielectric response time can become the rate‐determining factor of the reaction. In this article I intend to give a review of these modern developments in the theory and experimental study of electron‐transfer processes. We shall see that solvent dynamics may lead to a whole plethora of phenomena in reaction dynamics. The concepts needed for their description are not limited to electron transfer but bear relevance to many other chemical reactions in solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Angewandte Chemie International Edition in English
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.