Abstract

Abstract This chapter discusses dynamical solvent effects on the rate constants for chemical reactions in solution. The effect is described by stochastic dynamics, where the influence of the solvent on the reaction dynamics is included by describing the motion along the reaction coordinate as Brownian motion. Two theoretical approaches are discussed: Kramers theory with a constant time-independent solvent friction coefficient and Grote-Hynes theory, a generalization of Kramers theory, based on the generalized Langevin equation with a time-dependent solvent friction coefficient. The expressions for the rate constants have the same form as in transition-state theory, but are multiplied by transmission coefficients that incorporate the dynamical solvent effect. In the limit of fast motion along the reaction coordinate, the solvent molecules can be considered as ‘frozen’, and the predictions of the Grote–Hynes theory can differ from the Kramers theory by several orders of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.