Abstract

Abstract In response to viral infection, antigen specific naïve CD8 T cells expand to give rise to a heterogenous pool of effector cells consisting of short-lived effector cells (SLECs) and memory precursor effector cells (MPECs). While these effector populations are phenotypically and functionally well characterized, we still don’t fully understand how they arise from antigen responsive naïve CD8 T cells. We have combined progressive lineage recording with single-cell RNA sequencing and T cell receptor sequencing to delineate the early differentiation of OVA-specific endogenous CD8 T cells in response to acute VSV infection. Transcriptional profiling of CD8 T cells captured at the peak of T cell response confirmed 8 distinct T cell states including a unique interferon responsive cluster. RNA Velocity trajectory analysis supported an asymmetric model of CD8 T cell differentiation where early effector cells gave rise to SLECs while MPECs differentiated into further memory precursors. Moreover, our CRISPR/Cas9-based lineage recorder uncovered T cell clones of various sizes and allowed us to follow up to 5 generations of differentiating CD8 T cells. We observed that expanded clones comprised of memory and effector CD8 T cells while medium size clones preferred memory or effector fate, suggesting that different clones follow different differentiation models. Thus, using RNA-seq based trajectory analyses and a dynamic lineage recorder we uncovered potential differentiation pathways taken by early viral specific CD8 T cells. Our single cell full length TCR-seq will further add to our current models and highlight TCR sequences with better memory potential in response to infection. Supported by grants from NIH (R01 AI089805, R01 CA254042) and a training fellowship from the Burroughs Wellcome Fund.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call