Abstract

A dynamic simulation method for non-linear systems based on genetic programming (GP) and bond graphs (BG) was developed to improve the design of nonlinear multi-domain energy conversion systems. The genetic operators enable the embryo bond graph to evolve towards the target graph according to the fitness function. Better simulation requires analysis of the optimization of the eigenvalue and the filter circuit evolution. The open topological design and space search ability of this method not only gives a more optimized convergence for the operation, but also reduces the generation time for the new circuit graph for the design of nonlinear multi-domain systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.