Abstract

We present the first simulation of rainfall kinetic energy flux in a cloud resolving model. This demonstrates the potential for conducting erosion prediction studies using a regional climate model. Soil erosion is already a major global problem, and there is growing pressure on our land to deliver food and stability. Rainfall kinetic energy flux is an important variable in erosion prediction but is generally parameterized from intensity due to measurement difficulties. We show that a cloud resolving model can be used to dynamically simulate the kinetic energy of rain from basic physics, using four microphysics schemes. Results are within the range of observations and also capture the observed variability in kinetic energy for a given intensity. Large drops are shown to contribute disproportionately to total kinetic energy compared with their number, suggesting that several existing relations between terminal velocity and size of raindrops are poorly suited for kinetic energy modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call