Abstract
Abstract Ring gear is a key element for vibration transmission and noise radiation in the planetary gear system which has been widely employed in different areas, such as wind turbine transmissions. Its flexibility has a great influence on the mesh stiffness of internal gear pair and the dynamic response of the planetary gear system, especially for the thin ring cases. In this paper, the flexibility of the internal ring gear is considered based on the uniformly curved Timoshenko beam theory. The ring deformation is coupled into the mesh stiffness model, which enables the investigation on the effects of the ring flexibility on the mesh stiffness and the dynamic responses of the planetary gear. A method about how to synthesize the total mesh stiffness of the internal gear pairs in multi-tooth region together with the ring deformation and the tooth errors is proposed. Numerical results demonstrate that the ring thickness has a great impact on the shape and magnitude of the mesh stiffness of the internal gear pair. It is noted that the dynamic responses of the planetary gear set with equally spaced supports for the ring gear are modulated due to the cyclic variation of the mesh stiffness resulted from the presence of the supports, which adds more complexity in the frequency structure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have