Abstract

Traffic network disruptions lead to significant increases in transportation costs. We consider networks in which a number of links are vulnerable to these disruptions leading to a significantly higher travel time on these links. For these vulnerable links, we consider known link disruption probabilities and knowledge of transition probabilities for recovering from or getting into a disruption. We develop a framework based on dynamic programming in which we formulate and evaluate different known online and offline routing policies. Next to this, we develop computation-time-efficient hybrid routing policies. To test the efficiency of the different routing policies, we develop a test bed of networks based on a number of characteristics and analyze the results in terms of routes, cost performance and calculation times. Our results show that a significant part of the cost reduction can be obtained by considering only a limited part of the network in detail. The performance of our proposed hybrid policy is only slightly worse than the optimal policy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call