Abstract

The dynamic shortest path problem with time-dependent stochastic disruptions consists of finding a route with a minimum expected travel time from an origin to a destination using both historical and real-time information. The problem is formulated as a discrete time finite horizon Markov decision process and it is solved by a hybrid Approximate Dynamic Programming (ADP) algorithm with a clustering approach using a deterministic lookahead policy and value function approximation. The algorithm is tested on a number of network configurations which represent different network sizes and disruption levels. Computational results reveal that the proposed hybrid ADP algorithm provides high quality solutions with a reduced computational effort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.