Abstract

This study uses a torsional split-Hopkinson bar to investigate the shear response and fracture characteristics of unweldable Al-Sc alloy during mechanical testing at shear strain rates of 800s -1 , 1500s -1 , 2200s -1 and 2800s -1 and temperatures of -150°C, 25°C and 300°C. The experimental results show that both the shear strain rate and the temperature have a significant effect on the shear properties of the Al-Sc alloy. At a constant temperature, the shear stress, fracture shear strain, work hardening rate, yielding shear strength, work hardening coefficient, strain rate sensitivity and temperature sensitivity all increase with increasing strain rate. However, inverse tendencies are observed with increasing temperature at a constant strain rate. It is found that the Kobayashi and Dodd constitutive equation provides accurate predictions of the high strain rate shear plastic behaviour of unweldable Al-Sc alloy. SEM fractographic observations reveal that the fracture surfaces are characterized by a dimple-like structure. The density of the dimples increases with increasing strain rate at a constant temperature or with increasing temperature at a constant strain rate. SEM observations indicate that specimen fracture initiates at the interface of the matrix and the Al 3 Sc precipitates. Finally, twisted shear bands are observed on the equatorial plane of the gauge length section of the deformed specimens. The microhardness of these shear bands increases with increasing strain rate, but decreases with increasing temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.