Abstract

The dynamic shear behavior of composite liner interface is of great importance for landfill seismic analysis. In this study, an experimental investigation of the shear behavior of the interface between smooth high density polyethylene (HDPE) geomembrane (GMB) and compacted clay liner (CCL) is presented. A series of displacement-controlled cyclic shear tests were conducted to investigate the effects of displacement amplitudes, normal stress levels and number of cycles on the GMB/CCL interface shear behavior. Cyclic loading with higher displacement amplitude will produce greater vertical contraction and lower interface initial shear stiffness. Also, significant shear strength degradation was observed within the first 5 shearing cycles, then followed by slight interface reinforcement in subsequent cycles. The dynamic shear modulus of GMB/CCL interface is dependent on both normal stress levels and displacement amplitudes, while the damping ratio is only affected by displacement amplitudes. Finally, a method considering the GMB/CCL composite liner as an equivalent soil layer was proposed, which is useful for landfill seismic analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call