Abstract

The Polycomb Repressive complex 2 (PRC2) maintains a repressive chromatin state and silences many genes, acting as methylase on histone tails. This enzyme was found overexpressed in many types of cancer. In this work, we have set up a Computer-Aided Drug Design approach based on the allosteric modulation of PRC2. In order to minimize the possible bias derived from using a single set of coordinates within the protein-ligand complex, a dynamic workflow was developed. In details, molecular dynamic was used as tool to identify the most significant ligand-protein interactions from several crystallized protein structures. The identified features were used for the creation of dynamic pharmacophore models and docking grid constraints for the design of new PRC2 allosteric modulators. Our protocol was retrospectively validated using a dataset of active and inactive compounds, and the results were compared to the classic approaches, through ROC curves and enrichment factor. Our approach suggested some important interaction features to be adopted for virtual screening performance improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.