Abstract

Nonzero sum games typically have multiple Nash equilibriums (or no equilibrium), and unlike the zero-sum case, they may have different values at different equilibriums. Instead of focusing on the existence of individual equilibriums, we study the set of values over all equilibriums, which we call the set value of the game. The set value is unique by nature and always exists (with possible value [Formula: see text]). Similar to the standard value function in control literature, it enjoys many nice properties, such as regularity, stability, and more importantly, the dynamic programming principle. There are two main features in order to obtain the dynamic programming principle: (i) we must use closed-loop controls (instead of open-loop controls); and (ii) we must allow for path dependent controls, even if the problem is in a state-dependent (Markovian) setting. We shall consider both discrete and continuous time models with finite time horizon. For the latter, we will also provide a duality approach through certain standard PDE (or path-dependent PDE), which is quite efficient for numerically computing the set value of the game.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.