Abstract

The organization of brain functional networks dynamically changes with emotional stimuli, but its relationship to emotional behaviors is still unclear. In the DEAP dataset, we used the nested-spectral partition approach to identify the hierarchical segregation and integration of functional networks and investigated the dynamic transitions between connectivity states under different arousal conditions. The frontal and right posterior parietal regions were dominant for network integration whereas the bilateral temporal, left posterior parietal, and occipital regions were responsible for segregation and functional flexibility. High emotional arousal behavior was associated with stronger network integration and more stable state transitions. Crucially, the connectivity states of frontal, central, and right parietal regions were closely related to arousal ratings in individuals. Besides, we predicted the individual emotional performance based on functional connectivity activities. Our results demonstrate that brain connectivity states are closely associated with emotional behaviors and could be reliable and robust indicators for emotional arousal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.