Abstract

The biopharmaceutical industry is increasingly interested in moving from batch to semi-continuous manufacturing processes. These continuous bioprocesses are more failure-prone and process failure is more consequential. In addition, the probability of failure is dependent on process run time which generally is determined independent of scheduling considerations. This work presents a discrete-event simulation of continuous bioprocesses in a scheduling environment. Dynamic scheduling policies are investigated to make operational decisions in a multi-product manufacturing facility and react to process failure events and uncertain demand. First, different scheduling policies are adapted from the stochastic lot sizing literature and a novel look-ahead scheduling policy is proposed. Then, policy parameters (including process run time) are tuned using evolutionary algorithms. Our results demonstrate that the tuned policies perform much better than a policy that estimates policy parameters based on service level considerations and a policy based on a fixed cyclical sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call