Abstract
With rapid advances in wireless communications, multiple-input multiple-output (MIMO) antennas technology has been integrated into next-generation wireless communication standards. In this paper, we introduce a MIMO system model, propose a multichannel radio link control protocol and a dynamic channel scheduling policy. We then conduct a performance study on the multichannel link control protocol with two different scheduling policies (i.e., dynamic and static scheduling) using simulations. Simulation results show that the dynamic scheduling outperforms the static scheduling. It is observed that the average packet delay with the dynamic scheduling increases with the average error rate of parallel channels, but decreases with the variance in the error rates of parallel channels. More interestingly, the number of parallel channels has only an insignificant impact on the average packet delay, when the dynamic scheduling is applied in MIMO systems, from which we confirm that the use of parallel channels is a favorable option for packet data networking in the point of view of the link-layer performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.