Abstract

In this paper, the nonlinear dynamic responses of a piezoelectric cantilever plate near the first-order and second-order natural frequencies under the action of electromechanical coupling are studied by experiments and finite element (FE) methods. The influence of different excitation frequencies on the dynamical characteristics of piezoelectric cantilever plates is analyzed with the fixed excitation amplitude. First, an experimental setup is built, including a carbon fiber cantilever plate attached to a macro fiber composite (MFC) sheet. Then, the electromechanical coupling excitations are subjected to the plate with different frequencies, which are chosen near the first and second-order natural frequencies of the plate. The piezoelectric cantilever plate has periodical motions under a lower frequency excitation, and the motions of the plate become more complex after another high frequency excitation added in the physical field. The experimental results show that the motion of the piezoelectric cantilever plate changes from stable to unstable with high–low coupled resonant frequencies. At last, the FE study is carried out to compare and verify the experimental results and the effects of isotropic and orthotropic materials on the accuracy of natural frequencies results are also compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call