Abstract

A stochastic boundary element method (SBEM) is developed in this work for evaluating the dynamic response of underground openings excited by seismically induced, horizontally polarized shear waves under steady-state conditions. The surrounding geological medium is viewed as an elastic continuum exhibiting large randomness in its mechanical properties, which implies that the wave number of the propagating signal is a function of a random variable. Suitable Green's functions are proposed and used within the context of the SBEM formulation. More specifically, a series expansion for the Green's functions is employed, where the basis functions are orthogonal polynomials of a random argument (polynomial chaos). These are subsequently incorporated in the SBEM formulation, which employs the usual quadratic, isoparametric line elements for modeling the surfaces of the problem in question. Finally, this formulation is used for the solution of a few problems of engineering interest involving buried cavities (tunnels). We note that the present approach departs from earlier boundary element derivations based on perturbations, which are valid for ‘small’ amounts of randomness in the elastic continuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call