Abstract

The dynamic response of metallic lattice sandwich plates under impulsive loading is studied by experimental investigation. The sandwich structures composed of two identical face sheets and tetrahedral lattice cores, were designed and fabricated through perforated metal sheet forming and welding technology. The air blast experiment of lattice sandwich structures was performed by use of a four-cable ballistic pendulum system. The deformation/failure mechanisms were investigated through experimental observation and analysis. The impulsive resistance of the tetrahedral lattice sandwich structures is quantified by the maximum permanent transverse deflection of the back face sheet as a function of transmitted impulse. The maximum transverse deflections of tetrahedral lattice sandwich plates are compared with that of hexagonal honeycomb ones with identical parent materials and core relative density. The comparison implies that the tetrahedral lattice sandwich structures possess a better impulsive resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.