Abstract
Pressure sensors used in CTDs (conductivity temperature depth) respond to transients in temperature. It is often assumed that these transients have a negligible effect on pressure. However, in a Sea-Bird CTD used in Hawaiian waters, these transients lead to pressure errors as high as 8 db. We describe how we correct these errors using linear system theory by computing the response function of the pressure sensor to temperature transients. The CTD housing insulates the pressure sensor from the water to some extent, so that the effective response function is a combination of the intrinsic response of the pressure transducer convolved with a response function due to transfer of heat through the housing. Using this method, pressure is corrected to within 1 db. The impulse response functions for two similar pressure tranducers are quite different, probably due to small manufacturing variations. Thermal insulation of pressure sensors also varies from CTD to CTD. The net effect is that the response functions vary considerably from CTD to CTD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.