Abstract

This paper focuses on high-speed-operation textile machines with the aim of increasing the rotational speed by operating within the resonance region to vibration amplitudes up to 5g. The native design does not allow keeping the vibration amplitude under 5g, which is a safe operation mode, for revolutions more than 120,000 min-1. The innovative modification of the design was made by the incorporation of polymer composite materials with carbon dust, glass hollow microspheres, and silica sand fillers to the rotor-bearing casing; moreover, through the incorporation of a multilayered foam composite structure and particle damper to the pressure plate of the mechanical machine system. By using the approach of supplementing with high-damping composites, the existing native design can be used, thus avoiding the costly production of new components and subassemblies with modified shapes and dimensions. Twelve possible combinations of mentioned modifications were tested, evaluated and compared with the native design made of steel, as standard structure material in mechanical engineering. The average vibration amplitudes were evaluated in the region before the resonance peak and in the range of the resonance peak, i.e., 120,000-135,000 min-1. Significant vibration amplitude reductions in the range from 30 to 70% of the average vibration amplitude were obtained. The vibration amplitude reduction results were evaluated considering the mass through the amplitude reduction efficiency coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call