Abstract

General standby systems with component lifetimes following independent and nonidentical phase-type (PH) distributions are presented in a state-space model using state transition block matrices. The model is constructed by identifying a block matrix representing each system state and a block matrix that causes a transition from one system state to another. This general model is applicable to hot, warm, or cold standby and any combination of them in K-out-of-N general standby structures. The resulting model becomes a PH representation of the system lifetime distribution and is thus useful for exact dynamic system reliability analysis. The advantage is that many functional system reliability measures, such as the reliability, hazard, and mean residual life functions, can be obtained by simple matrix algebra. These functions are shown to be useful for determining optimal component ordering. Comparisons with other methods from previous publications are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.