Abstract

Thermosetting plastics exhibit remarkable mechanical properties and high corrosion resistance, yet the permanent covalent crosslinked network renders these materials challenging for reshaping and recycling. In this study, a high-performance polymer film (EI25-TAD5-Mg) was synthesized by combining click chemistry and cation-π interactions. The internal network of the material was selectively constructed through flexible triazolinedione (TAD) and indole via a click reaction. Cation-π interactions were established between Mg2+ and electron-rich indole units, leading to network contraction and reinforcement. Dynamic non-covalent interactions improved the covalent crosslinked network, and the reversible dissociation of cation-π interactions during loading provided effective energy dissipation. Finally, the epoxy resin exhibited excellent mechanical properties (tensile strength of 91.2 MPa) and latent dynamic behavior. Additionally, the thermal reversibility of the C-N click reaction and dynamic cation-π interaction endowed the material with processability and recyclability. This strategy holds potential value in the field of modifying covalent thermosetting materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.