Abstract

ABSTRACT Hot deformation of 12%Cr USC rotor steel was investigated by hot compression testing over a temperature range of 900 °C to 1,200 °C at strain rates of 0.001 s−1–1 s−1 with the use of a Gleeble–1500D thermal-mechanical simulator. The true stress–strain curves were obtained and showed that the stress increased with a decrease in temperature, an increase in strain rate, or both. Based on the stress–strain curves, processing maps of 12%Cr USC rotor steel under various strains were established, and the Zener-Hollomon (Z) parameter was calculated, it increased with decreasing temperature or increasing strain rate. Combining the values of the Z parameter and the microstructure after thermal compression, it was found that dynamic recovery was the main softening mechanism at lnZ > 39.09, and dynamic recrystallisation (DRX) became the main softening mechanism at 39.09 > lnZ > 32.56. When lnZ < 32.56, DRX occurred completely, and a small amount of recrystallised grains formed. The deformed microstructures showed that 12%Cr USC rotor steel incurred a continuous dynamic recrystallisation mechanism, a discontinuous dynamic recrystallisation mechanism, and a geometric dynamic recrystallisation mechanism during the hot deformation process. The intrinsic workability of 12%Cr USC rotor steel was explored by analysing the processing maps. It was found that the best forging process parameters range of the material in the actual production process was a deformation temperature range of 1,100 °C to 1,200 °C and a strain-rate range of 0.01 s−1–0.1 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call