Abstract
To investigate the properties of excitatory connections between layer 4 pyramidal cells and whether these differed between rat and cat, paired intracellular recordings were made with biocytin filling in slices of adult neocortex. These connections were also compared with those from layer 4 spiny cells to layer 3 pyramids and connections between layer 3 pyramids. Connectivity ratios for layer 4 pyramid-pyramid pairs (1:14 cat, 1:18 rat) appeared lower than for the other types of connections studied in parallel, but excitatory postsynaptic potential (EPSP) amplitudes and time course were not significantly different either between species or across types of connection. Layer 4 pyramids targeted postsynaptic basal dendrites in both species, whether the pyramidal target was in layer 4 or layer 3. Within layer 4, relationships between mean EPSP amplitude, numbers of putative contacts, and distance between connected pairs indicated a rapid decline in connectivity strength with distance, equivalent to 3.4 mV and 10 synapses per 100 microm separation, from a maximum of 4 mV and 10 synapses at 0 microm. However, a subset, of burst-firing layer 4 pyramids, appeared to make no connections with other layer 4 spiny cells. Second EPSPs were depressed by 36% in rat and 28% in cat relative to first EPSPs at interspike intervals <15 ms. Subsequent EPSPs in brief trains were further depressed. Depression was predominantly presynaptic in origin. Recovery from depression could not be described adequately by a simple exponential for individual connections; it included peaks and troughs with periodicities of 10-15 ms. Complex relationships between the first 2 interspike intervals and third EPSP amplitude were also apparent in all connections so studied. Large third EPSPs followed specific combinations of first and second interspike intervals so that increasing, or decreasing, one without changing the other resulted in a smaller third EPSP. Finally, the outputs of layer 4 spiny cells to layer 3 exhibited partial recovery from depression during longer high-frequency trains, a property not apparent in the other connections studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have