Abstract

Combining transmission Kikuchi diffraction, high resolution transmission electron microscopy and atom probe tomography, we investigated an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion (HPT) at room temperature and 200 °C, with an objective to reveal the deformation-induced precipitation and segregation of elements at grain boundaries, and to study their appearance at different processing regimes. Although HPT processing at the two temperatures both induced the formation of ŋ phase, ŋ precipitates formed at the two temperatures have different chemical compositions. The increase of the HPT processing temperature increased significantly segregation of Mg and Cu at grain boundaries. The HPT–induced segregation and decomposition of the alloy have a significant effect on its mechanical strength. Our results open a way for achieving advanced mechanical properties in nanostructured metals and alloys by designing their precipitation and segregation through the control of SPD processing regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.