Abstract

Energy awareness is an important aspect of modern network and computing system design and management, especially in the case of internet-scale networks and data intensive large scale distributed computing systems. The main challenge is to design and develop novel technologies, architectures and methods that allow us to reduce energy consumption in such infrastructures, which is also the main reason for reducing the total cost of running a network. Energy-aware network components as well as new control and optimization strategies may save the energy utilized by the whole system through adaptation of network capacity and resources to the actual traffic load and demands, while ensuring end-to-end quality of service. In this paper, we have designed and developed a two-level control framework for reducing power consumption in computer networks. The implementation of this framework provides the local control mechanisms that are implemented at the network device level and network-wide control strategies implemented at the central control level. We also developed network-wide optimization algorithms for calculating the power setting of energy consuming network components and energy-aware routing for the recommended network configuration. The utility and efficiency of our framework have been verified by simulation and by laboratory tests. The test cases were carried out on a number of synthetic as well as on real network topologies, giving encouraging results. Thus, we come up with well justified recommendations for energy-aware computer network design, to conclude the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.