Abstract

The middle-temporal area (MT) of primate visual cortex is critical in the analysis of visual motion. Single-unit studies suggest that the response dynamics of neurons within area MT depend on stimulus features, but how these dynamics emerge at the population level, and how feature representations interact, is not clear. Here, we used multivariate classification analysis to study how stimulus features are represented in the spiking activity of populations of neurons in area MT of marmoset monkey. Using representational similarity analysis we distinguished the emerging representations of moving grating and dot field stimuli. We show that representations of stimulus orientation, spatial frequency, and speed are evident near the onset of the population response, while the representation of stimulus direction is slower to emerge and sustained throughout the stimulus-evoked response. We further found a spatiotemporal asymmetry in the emergence of direction representations. Representations for high spatial frequencies and low temporal frequencies are initially orientation dependent, while those for high temporal frequencies and low spatial frequencies are more sensitive to motion direction. Our analyses reveal a complex interplay of feature representations in area MT population response that may explain the stimulus-dependent dynamics of motion vision.NEW & NOTEWORTHY Simultaneous multielectrode recordings can measure population-level codes that previously were only inferred from single-electrode recordings. However, many multielectrode recordings are analyzed using univariate single-electrode analysis approaches, which fail to fully utilize the population-level information. Here, we overcome these limitations by applying multivariate pattern classification analysis and representational similarity analysis to large-scale recordings from middle-temporal area (MT) in marmoset monkeys. Our analyses reveal a dynamic interplay of feature representations in area MT population response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.