Abstract
Recent advances in the understanding of the dynamic plastic response of crystalline solids are discussed. At the level of individual dislocations progress is being made on measurements of dislocation mobility at high stress levels and on elastodynamics solutions for transient dislocation motions. More progress is required on the understanding of changes in mobile dislocation density during dynamic plastic deformation. Widespread use of the Kolsky (or split-Hopkinson) bar has resulted in a reasonably clear picture of the dependence of flow stress on plastic strain rate for polycrystalline metals deformed at strain rates up to 103s−1. Influences of strain-rate history, temperature, and pressure require further investigation. At strain rates of approximately 103s−1’ to 105s−1 there is increasing evidence of a marked increase in flow stress with increasing strain rate. Pressure-shear plate impact experiments appear to be attractive for studying plastic response in this high strain-rate regime. Differences, if any, between stress-path effects at quasi-static strain rates and at strain rates of 103s−1 and higher remain poorly understood. Larger-than-predicted precursor decay observed in plate impact experiments on single crystals remains unresolved and of continuing fundamental interest; however, the importance of precursor decay measurements in determining dynamic plastic response appears to be diminishing because surface effects and limitations on the resolution of wave-front profiles represent serious constraints on the inferences that can be drawn from precursor decay measurements. Modeling of dynamic plastic response of polycrystals in terms of the response of slip systems is in an early stage of development. Kinematics of finite deformation by crystalline slip and consistent averaging techniques for modeling polycrystalline response are understood reasonably well. Increased emphasis on the understanding of the dynamic plastic response of single crystals and on the influence of microstructure appear desirable for sustained progress. Physically based models of wide applicability are required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.