Abstract
Optical metasurfaces (OMSs) have shown unprecedented capabilities for versatile wavefront manipulations at the subwavelength scale. However, most well-established OMSs are static, featuring well-defined optical responses determined by OMS configurations set during their fabrication, whereas dynamic OMS configurations investigated so far often exhibit specific limitations and reduced reconfigurability. Here, by combining a thin-film piezoelectric microelectromechanical system (MEMS) with a gap-surface plasmon-based OMS, we develop an electrically driven dynamic MEMS-OMS platform that offers controllable phase and amplitude modulation of the reflected light by finely actuating the MEMS mirror. Using this platform, we demonstrate MEMS-OMS components for polarization-independent beam steering and two-dimensional (2D) focusing with high modulation efficiencies (~50%), broadband operation (~20% near the operating wavelength of 800 nanometers), and fast responses (<0.4 milliseconds). The developed MEMS-OMS platform offers flexible solutions for realizing complex dynamic 2D wavefront manipulations that could be used in reconfigurable and adaptive optical networks and systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.