Abstract
Tunable metasurfaces promise to enable adaptive optical systems with complex functionalities. Among possible realizations, a recent platform combining microelectromechanical systems (MEMS) with gap-surface plasmon (GSP) metasurfaces offers high modulation efficiency, broadband operation, and fast response. We compare tunable metasurfaces operating in GSP and Fabry–Pérot (FP) regions by investigating polarization-independent blazed gratings both numerically and experimentally. Peak efficiency is calculated to be ∼75% in both cases (∼40% in measurements), while the operation bandwidth is found larger when operating in the GSP region. Advantages of operating in the FP region include relaxed assembly requirements and operation tolerances. Additionally, simulation and experimental results show that coupling between neighboring unit cells increases for larger air gaps, resulting in deteriorated efficiency. We believe the presented analysis provides important guidelines for designing tunable metasurfaces for diverse applications in miniaturized adaptive optical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.