Abstract

The paper considers stability analysis of linear time-periodic (LTP) systems based on the dynamic phasor model (DPM). The DPM exploits the periodicity of the system by expanding the system state in a Fourier series over a moving time window. This results in an L 2-equivalent representation in terms of an infinite-dimensional LTI system which describes the evolution of time varying Fourier coefficients. To prove stability, we consider quadratic time-periodic Lyapunov candidates. Using the DPM, the corresponding time-periodic Lyapunov inequality can be stated as a finite dimensional inequality and the Lyapunov function can be found by solving a linear matrix inequality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.